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Abstract

Integrating machine learning (ML) techniques into computational fluid dynamics (CFD) has emerged
as a promising model to speed up simulations, enhance turbulence modelling, improve prediction accuracies,
and enable real-time flow analysis Comparative performance is also examined Critical analysis of previous
work reveals current challenges, including limited generalization in flow regimes, high data requirements, and
lack of robust uncertainty quantification The paper also outlines future approaches, including hybrid physics
data-driven frameworks, transfer learning, interpretability, and open collaborative platforms Emphasis is By
synthesizing developments and identifying research gaps, this study provides insights that can guide the
development of ML—-CFD towards robust, scalable, and industry-ready solutions
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Introduction

The integration of machine learning (ML) and computational fluid dynamics (CFD) has become one
of the most dynamic and fast-growing research areas in computing science and engineering Accurate
simulation of complex mechanical processes such as multiphase flow, heat transfer and turbulence — is
possible by traditional CFD. Especially since simulation requires fine spatial/temporal discretization,
advanced turbulence modelling, and large parallel processing it is also possible that this slow process hampers
real-time decision processes and as engineering problems grow in size and complexity demand faster and
more efficient methods that can overcome traditional CFD limitations

In this context, machine learning offers a transformative approach. Leveraging the ability of ML algorithms
to detect patterns from data, detect nonlinear input-output maps, and assimilate complex correlations,
researchers develop models that can replace or supplement traditional solvers, and reconstruct high-resolution
solutions from raw or low-detail simulation results Unlike traditional purely physics-based numerical solvers,
ML-based approaches can be trained directly on high-fidelity simulation data (such as direct numerical
simulation — DNS, Large-Eddy-Simulation LES, or well-validated RANS models) and these models full
physical equations at each step Without solutions, they reproduce complex flow behaviour by learning directly
from the data. As a result, the combination of ML and CFD has opened up possibilities such as several times
faster simulations, better prediction accuracy and real-time flow analysis compared to traditional methods

Research results over the last few years clearly show that the use of ML techniques in many sub-fields of CFD
has proved highly scientifically and technically beneficial for example, surrogate modelling has been used in
aerodynamics and fluid dynamics for rapid performance assessment, enabling extensive design optimization
1.e. every possible size or geometry Deep neural network-based turbulence closure has been developed in the
field of turbulence modelling to achieve the best design without expensive full-order simulations, which
overcome the limitations of traditional Reynolds-averaged model by incorporating physical invariants in the
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model From (low-resolution) CFD results or sparse experimental data with the help of ML models such as
convolution neural networks, generative anti-networks (GANs) and autoencoders these methods have
obtained even finer scale structures than simulations done on macro networks You can also retrieve DNS-
level details. This confluence of ML and CFD in application areas such as design optimization, turbulence
modelling and super-resolution has brought new solutions beyond the limitations of traditional methods

Despite these advances, current ML-CFD integration faces several challenges. In particular, the
generalizability of models is limited. Many ML models perform well in environments covered by their training
data sets, but their accuracy and stability deteriorate when applied to unfamiliar flow conditions, different
geometries, or boundary conditions And besides being expensive and time-consuming, the lack of uncertainty
assessment in predictions obtained is a serious problem — most data-driven models results are “deterministic”,
not providing a reliable estimate of inherent uncertainty The above limitations (limited generalizability,
reliance on big data, and lack of quantification of uncertainty) are major open challenges of the current
research

To overcome these challenges, researchers will focus their future work in some new directions. Comparison
of traditional physics-based methods and data-driven ML approaches has been reported. For example, systems
such as physics-informed neural networks (PINNs) emerge, which incorporate ML model learning (loss
functions) of the governing physical equations of flow Such physics-informed learning makes model
prediction results physically more consistent and often perform better even on sparse data. In the same vein,
uncertainty quantification (UQ) is being integrated into ML-CFD workflows to assess the reliability of model
predictions and build confidence for industrial deployment can adopt these new techniques with confidence

Industrial integration is another forward direction in this area, where efforts to incorporate academic success
into practical manufacturing processes and engineering design cycles are gaining momentum by integrating
ML capabilities into existing CFD software infrastructure to enable real-time simulation-driven monitoring
and control Mass customization will also be possible. Available research in 2023 suggests that hybrid physics
data models, physics-informed approaches such as PINN, and uncertainty-inclusive reliable ML applications
will together pave the way for the next generation of CFD tools Having made a definition.

Prior Methodologies in ML-CFD Research
Data Driven Surrogate Models

Data-driven surrogate models are an approach designed to incorporate machine learning (ML) into
computational fluid dynamics (CFD). These models act as efficient estimators of CO and time-consuming
astronomy, solving entire wearable datasets without aero and time-consuming displays learning complex
execution sources from high fidelity (high fidelity) data sets such as direct numerical plant (DNS), large eddy
astronomy (LES) or Stahl RANS calculations Derived from modelling, surrogate models can significantly
reduce computational costs, and allow direct applications optimized to the design of plants

Ling, Kurzavsky, and Templeton (2016) were among the earliest researchers to demonstrate the potential of
deep neural networks (DNNs) in turbulence closure model Their work incorporated invariant features such as
Galilean invariance into the network architecture, so as to surrogate model traditional linear vortex viscosity
closure Expectation can predict the Reynolds stress tensor more accurately Although the results showed a
significant improvement in prediction accuracy, the model was limited to only those flow conditions that were
included in the training dataset, thereby limiting its generalizability
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In a comprehensive review, Duraisamy, laccarino, and Xiao (2019) classified existing surrogate model
approaches to turbulence modelling and flow forecasting and highlighted the advantages of combining data-
only models with physics-based constraints show poor exclusion performance when applied to geometries

Methodologically, surrogate modelling has evolved from regression-based methods to advanced deep learning
architectures capable of handling high-dimensional nonlinear flow features For example, Brunton, Proctor,
and Kutz (2020) developed the Sparse Identification of Nonlinear Dynamics (SINDy) method, which directly
CFD This method, which extracts governing equations from the data, was successful under some flow
conditions, but faced difficulties under highly nonlinear and high-dimensional turbulent conditions.

Another important achievement was the work of Thuri and colleagues (2020), in which they used
convolutional neural networks (CNNs) for turbulence super-resolution mesh refinement Their surrogate
models were able to convert macro simulations into high-resolution predictions, much to capture fine-scale
turbulent structures Lower computational costs were allowed but these models still required large, diverse,
and high-quality data sets to ensure robustness under different flow conditions.

In the area of unsteady flow forecasting, Xie et al. (2020) developed Tempo GAN, a GAN-driven surrogate
model designed to enhance temporal coherence in turbulent flow reconstruction. This approach was able to
accurately capture complex spatial patterns as well as subtle temporal variations in flow. Building on similar
goals, Fukami, Fukagata, and Taira (2021) used convolutional autoencoders to transform coarse CFD data
into high-resolution turbulent-field representations Their method not only provided impressive reconstruction
accuracy but of integrating deep learning techniques with CFD to significantly speed simulation processes
Promising roles also underlined.

Surrogate modelling has also been used in design optimization work. Bhatnagar and colleagues (2019) used a
CNN-based surrogate model to rapidly evaluate aerodynamic shapes during the optimization loop, greatly
reducing the number of full CFD runs required but like many other surrogate models, their method shows a
decrease in accuracy when applied to geometries outside the training set. Zhang, Wang, and Li (2022) solved
this problem by integrating machine learning with reduced-order modelling (ROM) for unsteady aerodynamic
analysis, improving prediction accuracy while maintaining computational efficiency

Recent research (2023) focuses on hybrid surrogate models that incorporate physical constraints directly into
a machine learning framework so that predictions match conservation laws Transfer learning techniques are
also popular, allowing pretrained surrogate models to adapt to new flow regimes with minimal redundant data.
Furthermore, adaptive surrogate frameworks, in which the model iteratively refines its predictions based on
feedback from the solver, emerge as a promising direction for industrial applications

Despite these advances, achieving generalization to varying flow conditions, reducing reliance on large high-
fidelity data sets, and ensuring physical interpretability of surrogate predictions are still major challenges that
need to be addressed that data-driven surrogate models from academic research to routine industrial CFD
practice Per transferable In summary, these models have evolved from simple regression-based approaches to
complex hybrid deep learning architectures capable of accelerating CFD workflows while maintaining high
accuracy although issues related to generalization, data requirements, and physical compatibility still remain
show a clear path to scalable, industry-ready surrogate models for CFD applications that are quickly becoming
possible (Ling et al., 2016; Duraisamy et al., 2019; Thuerey et al., 2019; Thuerey et al.,, 2020;Fukami et al.,
2021;

Physics Informed Neural Networks (PINNs)
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Physics-informed neural networks (PINNs) have emerged as a revolutionary approach to combine machine
learning (ML) techniques with computational fluid dynamics (CFD), overcoming some major limitations of
the data-driven model alone Unlike traditional ML methods that rely solely on high-fidelity data sets, PINNs
Directly incorporate the governing physical equations, such as the Navier-Stokes equations, into their loss
function This enables the network to find solutions that are data efficient and physically consistent, making
them suitable for solving forward-reversal problems in CFD

The concept was first formalized by Raisi, Perdicaris, and Karniadakis (2019), who demonstrated that the
inclusion of partial differential equations (PDEs) in the training process enables PINNs to solve nonlinear
flow problems with minimal labelled data. In forward problems, PINNs predict fluid fields based on known
initial boundary conditions, while in inverse problems estimate unknown parameters or boundary conditions
from sparse observations were limited to relatively simple geometric structures

Subsequent research extended the scope of PINNs to more complex CFD problems. the sun and so on. (2020)
used physically controlled deep learning to reconstruct velocity and pressure fields from sparse measurement
data. Leveraging embedded physics constraints, their PINN models achieved greater stability and accuracy
than data-only methods, although their use was still limited to flows of moderate complexity Mao, Jagtap, and
Karniadakis (2020) extended the method to high-speed polyphasic flows, including fluid—structure
interactions; These extensions, which also incorporated thermal effects into the network, demonstrated the
adaptability of PINNSs, but increased the computational burden and training complexity.

Several algorithmic innovations have been made to improve the scalability and robustness of PINNs. Lu and
so on. (2021) presented adaptive loss balancing techniques, while Cai et al. (2021) proposed domain
decomposition strategies to handle large computational domains. These advances have made it possible to
apply PINNSs to more challenging problems, but the modelling of high Reynolds number turbulence is still an
unsolved challenge Jin et al. (2021) demonstrated that PINNs can be used to super-resolve the flow field,
recovering fine scale structures from sparse data. However, PINNs often require careful tuning of
hyperparameters, making them more complex to implement in practice than traditional solvers.

Applications of PINNs have extended beyond traditional CFD into more specialized areas. Kissas and others.
(2020) applied PINNs to cardiac flow modelling, reconstructing hemodynamic fields in arterial networks from
limited clinical measurements. Wang, Yu, and Perdicaris (2021) analysed training instabilities in PINNs in
terms of neural tangent kernels, and provided a theoretical insight into why PINNs sometimes fail to converge.
Dwivedi, Srinivasan, and Karniadakis (2021) proposed distributed PNNs to efficiently solve polyphasic
problems, enabling scalable solutions for large fluid systems

Recent work has continued to address the major limitations of PINNs. Wassing et al. (2023) introduced an
adaptive viscosity model, Wong et al. (2023) developed multi-case PINN frameworks for biomedical tube
flows, and Ang et al. (2023) proposed a memory-efficient solution for low Reynolds number flows. These
innovations aim to enhance the computational efficiency of PINNs and improve their suitability for industrial
CFD applications.

Key advantages of PINNs include data efficiency, which allows accurate predictions even on limited labelled
data using physical constraints; mesh-free structure, which works without predefined discretization and
provides flexibility in handling complex geometric structures; and dual-use capabilities, through which
forward and reverse problems can be solved in one framework. However, scalability, training time reduction,
and automation of hyperparameter selection remain challenges in turbulent flows with high Reynolds number
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Current research is increasingly exploring hybrid PINN frameworks, in which data-dependent turbulence
closure or surrogate model is integrated into PINN to increase generalizability and reduce computational
burden. PINNs represent a powerful hybrid model that combines the interpretability and physical consistency
of numerical solvers with the flexibility and data efficiency of machine learning Although their use in
industrial CFD is still in its infancy, continued advances in scalability, robustness, and hybridization
strengthen the possibility that PINNs are the next generation of the future can be an important component in
CFD workflows (Raissi et al., 2019; Sun et al., 2020; Lu et al., 2021; Jin et al., 2021).

ML Assisted Numerical Solvers

Machine Learning (ML)-assisted numerical solvers represent an important development in integrating data-
driven methods into traditional computational fluid dynamics (CFD) workflows Unlike purely alternative
models that completely replace numerical solvers, ML-aided approaches synergize with traditional solvers
such Methods that speed computations, increase stability, or improve accuracies by embedding ML modules
directly in specific Steps in the CFD pipeline such as turbulence closure, mesh optimization, or iterative
solution acceleration can leverage the predictive capabilities of ML without sacrificing the proven robustness
of physics-based discretization schemes

Major advances in this area were demonstrated by Fukami et al. (2021), who used convolutional autoencoders
and generative adversarial networks (GANSs) to reconstruct high-resolution turbulent flow fields from coarse
CFD simulation In this framework, the coarse-mesh CFD solver provided the baseline flow field while the
ML model learned its super-resolution Computationally bypassed the need for expensive fine mesh
simulations The approach Physical coherence was preserved across reconstructed areas, but accuracy
depended on the diversity and fidelity of the training dataset

Similarly, Zhang et al. (2022) integrated ML techniques with reduced-order modelling (ROM) to accelerate
unsteady aerodynamics simulations. Using ML to enhance ROM prediction, the authors achieved improved
time accuracy and stability in long-term simulations, while maintaining computational efficiency

Besides super-resolution and ROM enhancement, other ML-assisted solver strategies have emerged in recent
years. For example, neural network models for predicting optimal initial guesses or convergence accelerator
parameters are integrated into iterative linear solvers to reduce the number of iterations required for pressure
and velocity coupling in incompressible flow solvers and for optimal time step and mesh refinement control
Reinforcement-learning frameworks are proposed, where the ML agent dynamically adjusts the solver
parameters to balance accuracy and efficiency during runtime

The main advantage of ML-assisted solvers lies in their incremental adoption. Unlike fully data-driven
models, they can be integrated into existing CFD codes with minimal disruption, making them particularly
attractive for industrial applications where solver validation and reliability are top priority When applied,
models often trained for a particular geometry or Reynolds number show performance degradation Ensuring
physical stability, so that ML components obey conservation laws and avoid unphysical artifacts even when
coupled with a numerical solver; and training data requirements, which, even lower than standalone ML
models, still require high-quality training data sets (often generated from DNS or LES) to ensure reliable
performance is also constrained This not only ensures physiological accuracy but also reduces the dependence
on detailed training data. In addition, integrating transfer learning makes it possible to adapt pretrained ML
models to new flow configurations with minimal retraining, significantly improving scalability for industrial
use Overall, ML-assisted numerical solvers bridge the gap between purely physics-based methods and fully
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data-driven approaches By doing so, and providing a viable way to integrate ML into mainstream CFD
workflows by accelerating simulations without compromising accuracy, these hybrid approaches are set to
play a key role in next-generation CFD tools in areas such as optimization, design iteration and real-time
decision making

Mesh Optimization and Adaptation

Mesh optimization and optimisation are critical components in the CFD workflow, directly affecting the
accuracy, stability, and computational cost of simulations. Traditional mesh refinement methods often rely on
heuristic or physics-based error indicators to determine areas requiring higher resolution. While effective,
these methods can be computationally expensive and fail to optimally allocate computational resources,
particularly in highly unsteady or multi-phase flows. Recent advances in machine learning have introduced
new strategies for predicting mesh optimisation patterns, offering the potential to significantly reduce
computational requirements while maintaining solution reliability.

Thuery et al. (2020) demonstrated one of the earliest deep learning-based methods for mesh refinement in
CFD. Their method used convolutional neural networks (CNNs) to predict optimal areas for refinement
directly from coarse-grid simulation data. By finding spatial features associated with high-error regions, the
model was able to guide adaptive mesh refinement (AMR) without relying solely on traditional error
estimators This greatly reduced computation cost and also maintained fine-scale feature accuracy, especially
in turbulence-dominated flows It was, and generalizing flows outside of the training set remained a challenge

In a related development, Bhatnagar et al. (2019) indirectly contributed to grid optimization through their
CNN-based aerodynamic coefficient estimation framework. Although their primary focus was on
aerodynamic performance prediction, surrogate models facilitated more targeted mesh refinement strategies
by identifying critical flow areas affecting aerodynamic forces, this integration of ML-driven flow analysis
with mesh optimization offers a promising direction for optimizing solver performance in design-oriented
simulations

Beyond image-based CNN approaches, emerging strategies in 2023 explored the use of graph neural networks
(GNN5s) and reinforcement learning (RL) for network optimization, this is especially beneficial in unstructured
network environments, where RL-based methods for connection information solution accuracy plays an
important role, on the other hand, enabling mesh optimization as a sequential decision problem to iteratively
adjust mesh density based on simulation feedback to optimize the accuracy cost trade-off

A major advantage of ML-driven network optimization is that it can be implemented as an online integration
within CFD solvers. Rather than generating a precomputed refinement model, ML models can dynamically
adjust the network based on the evolution of flow features during runtime. This is particularly beneficial for
transient simulations such as vortex deposition, burning, or shock—boundary layer interaction, where the
location of critical flow regions changes over time but despite these advances it is still a challenge to ensure
physical consistency and robustness in different flow regimes. Over-refinement in non-critical areas or over-
refinement in dynamically emerging areas can affect solution fidelity. Besides, the need for training data is
still great, especially when the objective is to generalize to various geometries and boundary conditions To
overcome these challenges, recent research trends focus on hybrid approaches that combine physics-based
error estimators and ML estimators f Emerging as a powerful tool to balance computational efficiency and
predictive accuracy in CFD By integrating ML-based inferences into adaptive refinement loops, these methods
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promise to significantly accelerate simulation workflows, especially in large-scale and real-time applications
(Thuerey et al., 2020; Bhatnagar et al., 2019).

Applications Documented in Previous Studies
Turbulence modelling

modeming turbulence is one of the major and widely researched applications of machine learning (ML) in
computational fluid dynamics (CFD), as the multi-scale and chaotic nature of turbulent flow makes fluid
mechanics a complex and long-term challenge Applied, yet often forced to compromise between
computational cost and prediction accuracy Machine learning offers an opportunity to overcome this
limitation, as it can learn complex closure relationships directly from high-fidelity datasets, such as direct
numerical simulation (DNS) results by Ling, Kurzawski, and Templeton (2016). Pioneering work has been
done integrating deep neural networks (DNNs) into RANS-based turbulence closure modeming, incorporating
physical invariants such as Galilean invariants and rotational invariants directly into the network architecture
to predict the Reynolds stress tensor The models can be more accurate than traditional linear eddy viscosity.
Although this model produced good results under trained flow conditions, its generalization to flows outside
the range of training data was limited, which is still a challenge in many turbulence-based ML applications
Low-resolution CFD data reconstructed high-fidelity turbulence fields, where DNS-level accuracy was
achieved at low cost using convolutional neural networks (CNNs) and generative anti-networks (GANSs) This
approach coarse-grid CFD solvers fine-scale without expensive mesh refinement were able to capture
turbulent structures, which is particularly attractive for speeding up transient simulations, although large high-
quality training data sets are still needed Sub grid scale (SGS) modelling in LES has also been improved by
ML, where data-based SGS models trained on DNS data than static empirical coefficients Adjust dissipation
levels based on local flow characteristics to better capture energy spectra and fine-scale dynamics, although
ensuring physical consistency is still challenging Recent research has moved beyond pure data-based
predictions to physics-informed machine learning approaches, in the loss of ML models Incorporating the
Navier-Stokes equations, so that predicted turbulence fields obey conservation laws and fundamental
principles of fluid dynamics such hybrid models combine the data efficiency of PINNs (Physics-Informed
Neural Networks) and the accuracy of DNS-trained surrogates to provide better generalizations for unseen
flow scenarios In addition, adapting pretrained turbulence models through transfer learning works for new
Reynolds numbers, geometries, or flow conditions, reducing the need for extensive retraining which is very
useful in industrial applications. Similarly, reinforcement learning has been used in adaptive turbulence
closure selection, allowing the solver to dynamically choose the most appropriate turbulence model during
simulation based on flow characteristics Lack of DNS data hinders their widespread use to overcome these
problems, current research trends are moving towards a hybrid turbulence modelling framework where ML is
used. In summary, machine learning has transformed turbulence modelling from static, empirical closure
methods to dynamic, data-driven frameworks capable of capturing fine-scale flow structures with greater
accuracy and less, and although their fully generalizable and interpretable forms are still in development. With
the integration of hybrid modelling, they are very likely to be widely adopted in industrial CFD applications
(Ling et al., 2016; Fukami et al., 2021).

Aerodynamic Design Optimization

Aerodynamic design optimization is a key area of integrated application of machine learning (ML) and
computational fluid dynamics (CFD), where aerodynamic shapes such as air foils, wing(s) and vehicle bodies

are traditionally optimized by a combination of iterative CFD simulations and optimization algorithms ML-
oo - — - -
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based approaches address this challenge by developing surrogate models and hybrid frameworks, which
enable rapid evaluation while maintaining predictive accuracy Bhatnagar et al. (2019) presented a
convolutional neural network (CNN) based aerodynamic shape optimization framework, which significantly
reduced the computational burden of traditional design procedures In this study, CNN model was trained on
high-fidelity CFD dataset to predict aecrodynamic properties like lift and drag directly from shape parameters
could evaluate many times faster than traditional CFD, allowing them to be easily integrated into global
optimization loops Although, this approach was quite accurate in trained geometries, its performance
decreased in geometries different from the training set to improve, and prediction, etc. by enabling faster
detection of gust response, flutter and other dynamic design scenarios. This hybrid approach balanced the
speed of ROM with the corrective capacity of ML ROM Baseline quality remained a limiting factor, as
inaccuracies in reduced-order solutions could creep into ML-based estimates by 2023. Recent research has
made aerodynamic design optimization more effective using active learning strategies Increases, while
decreasing the number runs expensive CFD. At the same time, multi-fidelity modelling approaches have
emerged, incorporating ML to integrate low-fidelity analytical models and high-fidelity CFD data, harnessing
the power of both to accelerate optimization without losing accuracy Reduces These physics-informed
surrogates are particularly valuable in an industrial approach, where optimization tasks meeting safety-critical
performance criteria with high confidence are presented as sequential decision problems and the RL agent
gradually changes geometry to maximize efficiency objectives (e.g. lift-to-drag ratio), and design constraints
Follows Such methods have yielded encouraging early-level results for multi-objective optimization in
complex designs, involving combination Aerodynamic and structural considerations but despite these
advances generalize to new geometries, manage high-dimensional parameter space, ensure interpretability of
ML-based design process F Still Challenges Current research in this direction focuses on hybrid approaches
that combine the interpretability of physics-based models and the efficiency of ML representatives to pave the
way for more reliable extensible aerodynamic optimization workflows There are multi-objective problems
that are capable of making complex uncontrollable and unstable, greatly speeding up the design cycle while
maintaining high accuracy (Bhatnagar et al., 2019; Zhang et al., 2022).

Over resolution and flow reconstruction

Super-resolution and flow reconstruction emerged as a transformative application of machine learning (ML)
that made it possible to retrieve high-fidelity flow fields from low-resolution or incomplete data in
Computational Fluid Dynamics (CFD) Using data-driven models to achieve DNS-level resolution, super-
resolution methods Reconstruct missing flow features that can upscale coarse simulation results, improve
spatial and temporal resolution, and physically consistently One of the most important contributions in this
field is Tempo GAN by Xie, Franz, Chu, and Thuy (2020). Generative anti-network (GAN)-based approach
developed for super-resolution in turbulent flow simulations Different from traditional imaging super-
resolution techniques, Tempo GAN incorporates time organization in the training process to reconstruct fine-
scale turbulence structures with good temporal consistency Transient simulation is particularly feasible for
occurrence, where time-asymmetry can produce physically unrealistic results although this method was very
effective to recover fine scale features Greatly reduced This lets engineers integrate ML-based super-
resolution modules directly into CFD workflows to run coarse simulations, and post-processing DNS-near
quality and used in situations where data is sparse or incomplete such as velocity or pressure field
reconstruction from limited sensor measurements Can be done through Informed Neural Networks (PINNs)
In combination with physical law learning these models ensure that reconstructed fields follow governing
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equations, enhance reliability of engineering applications From 2023 recent studies integrating multi-scale
learning architectures have further advanced these methods Since then, using transfer learning methods Pre-
trained super-resolution models applied to new flow configurations with minimal retraining, reducing reliance
on large data sets This Adaptability is important in industrial workflows where training data is often limited.
Another emerging trend is that super-resolution methods can produce visually realistic but physically incorrect
reconstructions ML super-resolution methods to identify potential artifacts or overfitting caused by models to
ensure reconstructed field reliability. Furthermore, the need for a high-quality training dataset generated from
an often-expensive DNS is still a barrier to large-scale adoption. To address these problems, current research
develops hybrid approaches that combine data-based over resolution with physical conservation principles to
ensure efficiency and adherence to physical conservation principles In summary, the difference between ML
data needed for high-fidelity engineering analysis of course, inexpensive simulations, these methods
Monitoring is poised to play a central role in the future of CFD post-processing, experimental data
assimilation, and real-time streaming (Xie et al., 2020; Fukami et al., 2021).

Comparative analysis of previous works

Ling, Kurzawski, and Templeton (2016) first applied deep neural networks (DNNs) to model turbulence
closure, incorporating physical properties such as Galilean invariance in the network architecture Their model
made predictions of the Reynolds stress tensor physically more consistent than traditional rotational viscosity
models the demonstration was done. However, it had the limitation of being limited to only those flow
conditions that were included in the training data and its accuracy decreased in unseen flows or novel
geometries (Ling et al., 2016).

Raissi, Perdikaris, and Karniadakis (2019) developed physics-informed neural networks (PINNs). This
approach ensured data efficiency and physical consistency by incorporating the Navier-Stokes equations
directly into the loss function. PINNs have succeeded in solving forward and inverse CFD problems even with
limited sparse data. However, their application in turbulent flows with high Reynolds numbers has been
difficult and its extension to the industrial scale is still limited (Raissi et al., 2019).

Thuerey et al. (2020) presented a CNN-based mesh refinement and super-resolution technique. This model
showed the ability to identify high-error regions in CFD results and transform them into higher resolution
ones, thereby reducing computational cost and making it possible to capture turbulence structures at the
microscopic level. However, its major limitation is that it requires large, diverse, and high-quality datasets and
its generalization outside the training domain is uncertain (Thuerey et al., 2020).

Fukami, Fukagata, and Taira (2021) presented a combined framework based on CNN and GAN. The method
reconstructed turbulent flows from low-resolution CFD data with DNS-level accuracy and preserved energy
spectra and vorticity. However, its performance remained highly dependent on high-fidelity and representative
training data and its performance was unstable under different flow conditions (Fukami et al., 2021).

Zhang, Wang, and Li (2022) improved unsteady aerodynamic analysis using ML-enhanced reduced-order
modelling (ROM). It increased the accuracy and temporal stability of the ROM and accelerated CFD
simulations for aeroelasticity and optimization problems. However, its performance depended on the
underlying quality of the ROM, and if there were errors in the original ROM, they were also transferred to the
ML-enhanced predictions (Zhang et al., 2022).

Holistic Insights
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Comparative analysis of these studies shows that data-driven methods such as DNN, CNN and GAN provide
high accuracy under specific conditions, but require large and high-quality datasets. In contrast, physics-
informed models (PINNs) can work even with relatively less data, but their computational complexity
increases at flows with high Reynolds numbers.

Additionally, differences were also observed between generalization and specialization: PINNs showed better
generalization ability while surrogate models such as CNN/DNN/GANSs proved to be excellent in specialized
tasks, such as super-resolution or turbulence modelling.

From a computational balance point of view, mesh refinement and ROM-based hybrid models are helpful in
saving costs, but their performance depends on the quality of the underlying data and models. From an
industrial point of view, all these models still need further development, especially in the areas of uncertainty
quantification, interpretability, and adaptability to different flow conditions.

Challenges identified in previous studies

Analysis of previous research makes clear that despite significant progress in integrating machine learning
(ML) and computational fluid dynamics (CFD) several serious and interrelated challenges still exist that affect
model accuracy, reliability, and industrial utility and whether performs equally accurately in unseen scenarios
For example, deep neural networks (Ling et al., 2016) or CNN-based super-resolution models (Fukami et al.,
2021) perform well in their training domain, but their prediction accuracy decreases rapidly at different
Reynolds numbers, sizes, or turbulence levels Their multipurpose capability is limited in industrial
applications The second major issue is physical consistency & interpretability, as data-only models can
sometimes violate fundamental physical laws like mass motion or energy conservation, and when PINNs
(Raissi et al., 2019) this problem by incorporating these laws in the training process partially resolved, it
remains very computationally valuable to accurately capture high Reynolds numbers and large-scale
turbulence. Moreover, ML models act as “black boxes”, making it difficult to understand their decision
reasons, and this is a major obstacle to adoption in safety-sensitive areas such as aerospace or biomedical
flows A fourth problem, especially for complex multiphase or high Reynolds number flows, is scalability at
the industrial scenario, as existing models do not work effectively without retraining due to complex geometry,
Multiphysics coupling, and changing operating conditions in real industrial scenarios. A fifth challenge is
computational balancing in hybrid models, where methods like ROM—ML or ML-assisted solvers are hard to
balance between accuracy and speed, as their performance largely depends on the quality of the baseline
physics-based model Lack of (UQ) is a major obstacle, as it is risky to rely on producing models without clear
confidence limits, especially when data are sparse or need extrapolation Although in recent years some
research has begun to incorporate probabilistic or Bayesian approaches in ML-CFD frameworks UQ
mechanisms are needed

Future Perspectives

ML CFD models need to be transparent to achieve widespread adoption, especially in safety-sensitive fields
like aerospace, automotive, and energy Current high-performance machine-learning architectures often act as
“black boxes,” making it difficult for engineers to understand what factors or flow characteristics or
predictions are liable to future emphasis on interpretive Al (XAI) approaches Explaining which flow patterns
or physical parameters influence model output will not only increase confidence but also help researchers
debug models, identify biases, and ensure compliance with regulatory standards. Similarly, uncertainty
quantification (UQ) will be important for industrial engineers to clearly distinguish between high-risk and
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high-confidence areas to know the extent of their prediction reliability This will use probability-based
modelling, Bayesian neural networks, and ensemble-based methods a long-term goal To become a standard
part of industrial pipelines is for ML CFD methods, which need seamless integration with existing CFD codes,
active flow control, rapid design iterations, and simulation to enable real-time or near-real-time applications
such as monitoring. Macroscopic scale phenomena will extend the ability to efficiently combine processes
such as chemical reactions, multiphase flow with fluid dynamics, and precisely measuring microscopy effects
Availability of high-quality, standardized, open data sets and community-based collaborative research
platforms to ensure reproducibility and accelerate innovation MLCFD will be required to integrate with open-
source CFD solvers. Quantifying uncertainty to aid decision making, and play key roles will move towards
seamless integration of real industrial impacts If these directions are pursued systematically, ML CFD
frameworks will evolve from specialized research tools to fundamental components of engineering simulation
This will also enable deeper understanding

Conclusion

Integration of machine learning (ML) and computational fluid dynamics (CFD) is revolutionizing fluid
simulation, enabling faster, more efficient and in many cases more accurate predictions Advances in recent
years have proven its potential application in turbulence modelling, surrogate modelling and real-time flow
analysis improved the quality of engineering decisions by saving time and resources yet challenges such as
limited generalizability, physical discrepancies, large need for high quality data, lack of uncertainty
quantification still hinder its widespread industrial adoption Future direction Towards hybrid physical-data-
based approaches; is to interpretable transparent models, and open and standardized data sets, supported by
collaborative interdisciplinary research If continued organized efforts in these areas, ML—CFD methods will
evolve from research prototype level to robust, industrial-scale tools for simulating and solving not only fluid
flow problems will redefine process, but also take design, customization and decision-making capabilities in
the industry to new heights
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